Support Vector Machine (SVM) is a popular supervised machine learning
algorithm used for classification and regression tasks. SVMs are particularly
effective in solving binary classification problems, where the goal is to
separate data points into two distinct classes.
The main idea behind SVM is to find the best possible hyperplane that
separates the data points of different classes in the feature space. The
hyperplane is defined as the decision boundary, which maximizes the
margin between the classes. The margin is the distance between the
decision boundary and the nearest data points from each class, and SVM
aims to find the hyperplane with the largest margin.

: روابط التواصل مع المحاضر (المهندس حسن الحفنى / ماجستير علوم البيانات من كندا)
https://www.linkedin.com/in/hassan-elhefny-a64b78245
https://www.facebook.com/7assanElhefny/
https://wa.me/+201032066499
لحجز الكورسات من اكاديمية دليل الطالب :
https://wa.me/+201065761668
لتحميل المستندات :
https://drive.google.com/drive/folders/1AkhtyXjeJzZvzpRhwol999cCJpc7F6FD?usp=sharing

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data.
Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.

Data science is a "concept to unify statistics, data analysis, informatics, and their related methods" to "understand and analyze actual phenomena" with data. It uses techniques and theories drawn from many fields within the context of mathematics, statistics, computer science, information science, and domain knowledge. However, data science is different from computer science and information science. Turing Award winner Jim Gray imagined data science as a "fourth paradigm" of science (empirical, theoretical, computational, and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the data deluge.

A data scientist is a professional who creates programming code and combines it with statistical knowledge to create insights from data.